

AURUM®

超耐熱・熱可塑性ポリイミド樹脂

オーラム®

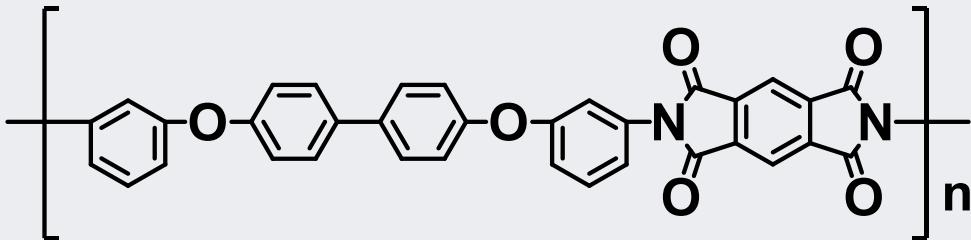
Thermoplastic Polyimide TPI

The information contained herein is to the best of our knowledge, accurate and reliable. No warranty is given as to the accuracy or completeness.

0→1 MAKE IT HAPPEN

IMITSUI CHEMICALS CONFIDENTIAL

1. AURUM® Introduction to Thermoplastic Polyimides


- Features (vs. Competitors), Applications

2. AURUM® Suggestion for insulating coating of magnet wires

3. AURUM Extrusion Processing Recommended Conditions

What is AURUM®?

AURUM® is Semicrystalline Thermoplastic polyimide (TPI) suitable for Injection Molding and Extrusion process with outstanding $T_g = 245^{\circ}\text{C}$.

Metal & Ceramics replacement

Features of AURUM®

Excellent heat resistance

Usable up to 240°C ($T_g=245^{\circ}\text{C}$, $T_m=388^{\circ}\text{C}$)

Excellent dimensional stability & High mechanical properties

Stable CLTE, Excellent creep resistance

Outstanding wear and friction properties

Stable and low coefficient of friction & low abrasion loss

Exceptional Clean properties

Lower amount of Metallic Impurities & out-gassing

Stable in any Environment

Excellent Plasma & radiation resistance, resistance to chemicals Oil & solvents at elevated temps.

Excellent electrical insulation performance

Very good dielectric properties

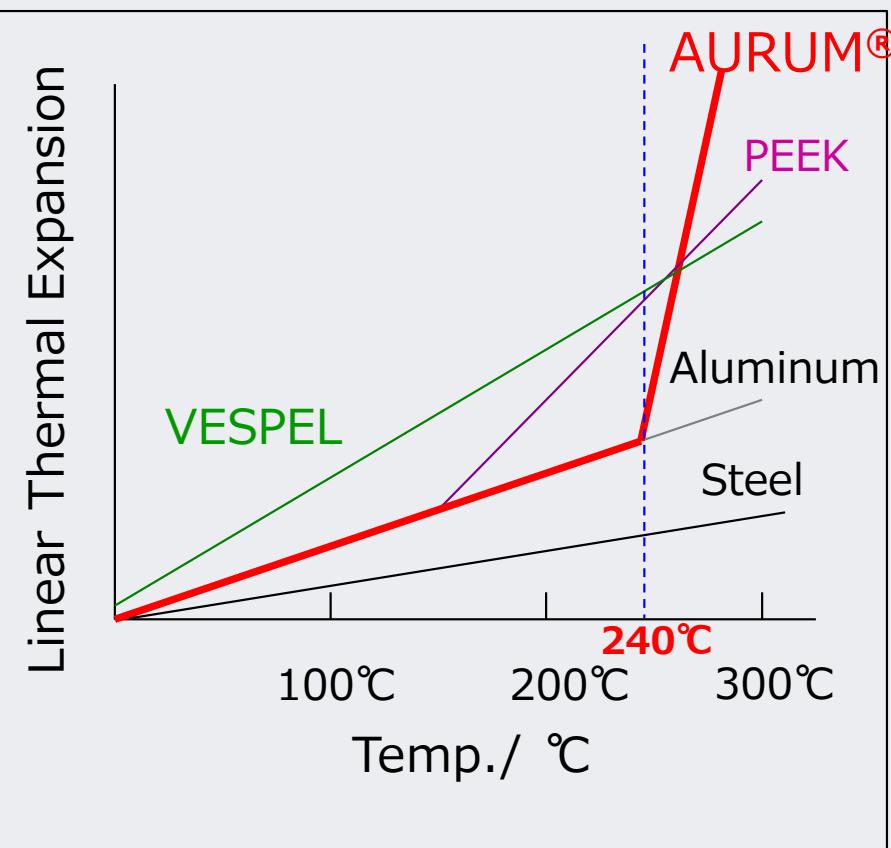
AURUM® Advantages over HPPs

AURUM vs Thermoset PI

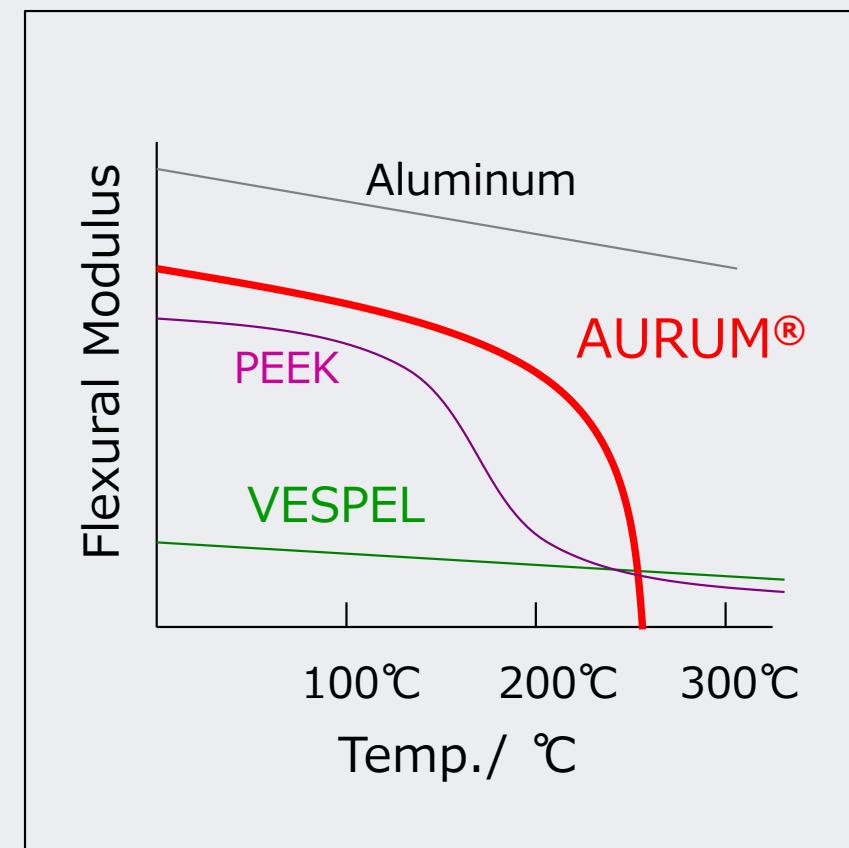
- AURUM can be produced with Injection molding & Extrusion and suitable for high production rate
- Thermoset PI: requires special processing and available in semi finished parts which requires machining

AURUM vs PAI

- AURUM No need of post annealing process, Flexibility in parts design
- PAI requires post annealing process, and this time consuming and costly , Special equipment is required for annealing


AURUM vs PEEK

- AURUM High temperature stiffness in the 150 ~ 230 °C temperature range (Higher Tg), Low coefficient of thermal expansion above 150 °C, Dimension Stability
- PEEK performance drops over its Tg (140°C)


AURUM vs PEI

- AURUM Higher Tg, better chemical resistance

Feature1 : Dimensional stability

Feature2 : High Modulus up to 240° C

CLTE : Stable up to 240° C , equivalent with Aluminum
Keep high Flexural modulus up to 240 °C

AURUM® vs PEEK

	Test method	unit	AURUM® PL450C	PEEK KT-820NT (solvay)	PEEK AV-630NT (solvay)	PEEK 450G (VICTREX)
MFR	400°C×1.05kg	g/10min	6	-	-	-
	400°C×2.16kg	g/10min	-	3	7	3
Tm(DSC)	ASTM D3418	°C	388	340	340	343
Tg(DSC)	ASTM D3418	°C	245	150	158	143
Tensile Strength	ASTM D638	MPa	100	100	90	90
Tensile Elongation	ASTM D638	%	100	20-30	50-80	70
Flexural Strength	ASTM D790	MPa	130	150	130	150
Flexural Modulus	ASTM D790	GPa	2.6	3.7	3.2	3.7
IZOD	ASTM D256	J/m	90	90	-	80
HDT	ASTM D648	°C	225	157	181	154

Advantages (vs PEEK) : heat resistance, mechanical properties

2. AURUM® Suggestion for insulating coating of magnet wires

Suggestion for insulating coating of magnet wires

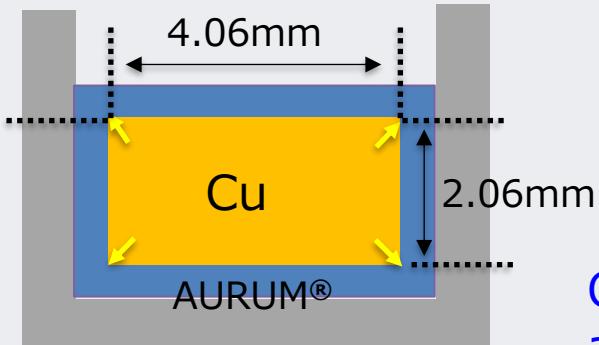
Technology Trend
: Higher Power and Miniaturization

Requirements For Parts Insulating Coatings

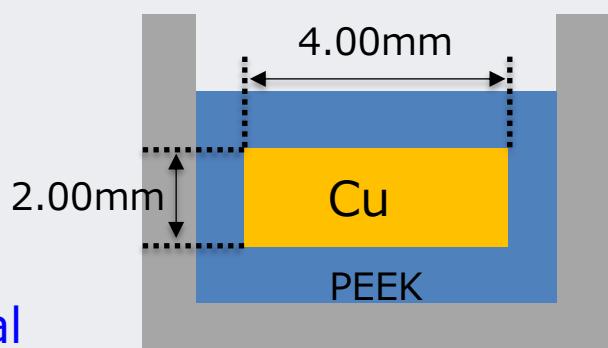
- ① Breakdown voltage (high temp.)
- ② PDIV (high temp.)
- ③ Flexibility (SS-curve)
- ④ Chemical resistance
- ⑤ Heat aging resistance

AURUM®, in particular, has stable properties at high temperatures, enabling thinner insulating coating, which contributes to higher output and miniaturization of motors.

Competitive Comparison Table (①Breakdown Voltage, ②PDIV)



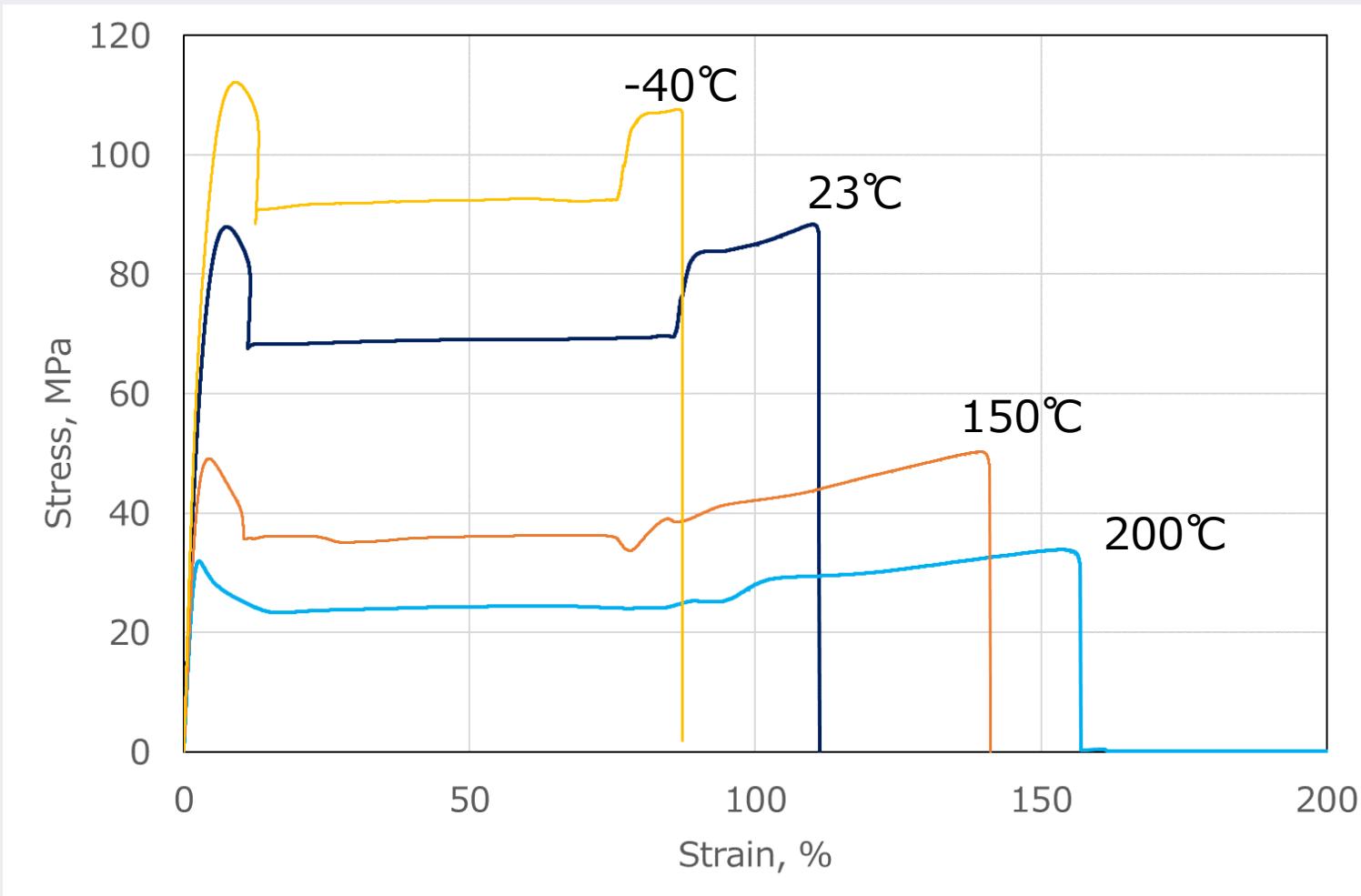
Underlines are literature values


Property	unit	AURUM PL450C	PEEK 450G	PAI Catalog data	Epoxy
Coating process		Extrusion	Extrusion	Dipping	Dipping
Tg/Tm	°C	245 / 388	143 / 343	<u>275</u> / -	<u>~200</u> / -
Breakdown voltage	23°C	kV/mm	23	18	<u>24</u>
	180°C		25	17	-
Dielectric Constant (1kHz)	23°C		3.1	3.2	<u>4.0~4.6</u>
	180°C		3.1	3.9	<u>3.4~4.4</u> _(1GHz)

Ex.)PDIV:1200 Vp@180°C

[Dakin formula] $V = \sqrt{2 \times 163 \times (t/\epsilon_r)^{0.46}}$
 V : Partial discharge inception voltage [Vp] ϵ_r : Dielectric constant of insulating material
 t : Thickness of insulating material [μm]

AURUM® : 112um



PEEK : 141um

Cross-sectional area of conductor improved up to 20%

③Flexibility SS-curve

▼Tensile test/PL450C

AURUM has sufficient flexibility characteristics.

④Chemical resistance

Test grade : AURUM PL450C

Evaluation : tensile strength/Elongation, weight loss

chemical : engine oil、ATF

Dip temp : 160 °C

Engine Oil (160 °C)			
Dip time	Tensile strength	Tensile elongation	Weight loss
hrs	MPa	%	%
0	96	95	
100	96	96	0.04
200	96	86	0.12
500	97	89	0.11
1000	98	86	0.11

ATF (160 °C)			
Dip time	Tensile strength	Tensile elongation	Weight loss
hrs	MPa	%	%
0	96	95	
100	97	96	0.03
200	97	90	0.03
500	97	89	0.06
1000	97	95	0.03

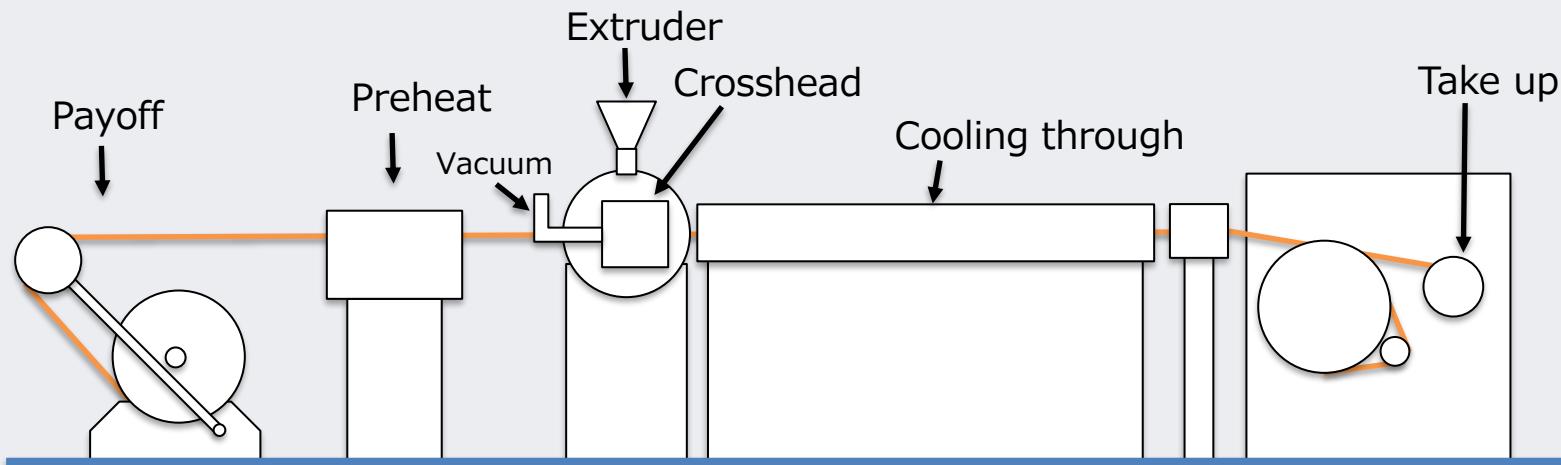
No significant change in properties was observed after immersion for 1000h.

⑤Heat aging resistance

Test grade : AURUM PL450C

Evaluation : tensile strength/Elongation

Test temp : 230°C


Tensile test	unit	AURUM® PL450C			
		Initial	100 Hrs	500 Hrs	1,000 Hrs
Tensile Strength	%	100	90	90	85
Tensile Elongation	%	100	85	85	80
Tensile Modulus	%	100	110	110	110
Weight loss	%	-	0.1>	0.1>	0.1>

No significant change in properties was observed at 230°C

3. AURUM Extrusion Processing Recommended Conditions

AURUM Extrusion Processing Recommended Conditions

Mitsui Chemicals

◆ Initial recommended temperature for each process

Item	Recommended Temperature
First half of cylinder (below hopper)	380-400°C
Middle of cylinder	400-420°C
Second half of cylinder (die side)	400-420°C
Die	400-430°C
Copper Wire; Preheating Temperature	≥ 300°C

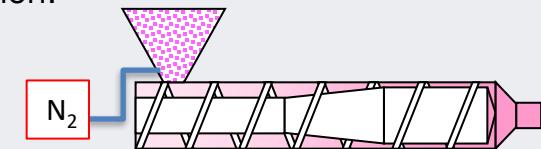
◆ Example of Trial Production

•Conductor: Flat angle copper wire (oxygen free copper)
 Size 1.54mm x 2.99mm •Extruder : 25 mmφ, L/D25 •Die : Tubing Die
 •Mesh : 30/60/100/100/60 •Grade : PL450C (Standard Brand)

Coating Thickness μm	Condition							
	Line Speed m/min	Screw Rotation rpm	Extrusion temperature °C					
μm	m/min	rpm	C1	C2	C3	Flange	Head	Die
60	4.0	4.5	390	400	410	410	410	400
120	2.0	3	↑	↑	↑	↑	↑	↑
240	1.5	4.5	↑	↑	↑	↑	↑	↑
130	2.0	3	390	410	420	420	420	410
220	1.5	4.5	↑	↑	↑	↑	↑	↑

◆ Extruder Maintenance

- Before extrusion, it is recommended to disassemble and clean the extruder so that the extruder is empty.
*To prevent contamination.


◆ Preparation

- It is recommended to dry the pellet at 200°C for 5hr or more, preferably 12hr or more.
*If possible, it is recommended to dry the pellet in a dryer until just before it is inserted.
- If necessary, degreasing treatment of the copper wire is recommended.
- If it is necessary to improve adhesion, it is recommended to heat the copper wire beforehand.

◆ Extrusion

■ Extrusion atmosphere

- Nitrogen is introduced into the extruder from the hopper and nitrogen replacement is recommended.
*To prevent viscosity increase and gelation (black spots/fish eyes) due to thermal oxidation.

■ Startup

- At a low screw speed of about 3rpm, take pellets into a heat-resistant cup, etc.
It is recommended to inject a very small amount into the hopper (starvation feed).

■ During extrusion

- We recommend that the amount of pellets taken out of the dryer at one time should be used up within 60min (Within 30min if nitrogen purge is not possible).
- Just before the pellets run out of the hopper, replenish the dried pellets each time to avoid empty pellets in the hopper.
- Do not stop the rotation of the screw. If sampling is not performed during breaks, place the pellet in a hopper so that it does not short out. Keep the rotation of the screw at a low speed.
- We recommend that the resin residence time in the extruder be 10min or less.
- Keep warm and control the temperature so that the temperature of the extruder or the die does not fall below the melting point (388°C).
*Crystallization (solidification) can lead to problems such as torque over, blockage, and mixing of solids into the coating layer.

■ Purge after extrusion

- It is recommended to replace with an engineering plastic material that is compatible with the extrusion temperature of Aurum, and then replace with a general purge material.
*Recommended engineering plastic/purge material: PEI (ULTEM#1000)

Thanks for Your Attention!

Disclaimer:

The content displayed on the presentation belongs to Mitsui Chemicals Group. You may not reuse, republish or reprint such content without our written consent. All information posted is merely for scientific purposes. While the information on this presentation has been verified to the best of our abilities, we cannot guarantee that there are no mistakes or errors.