

Thermal Decomposition Properties of AURUM[®]

AURUM[®] is very thermally stable, showing the thermal decomposition properties that are better than those of PEEK, a representative high-performance resin. A thermal decomposition curve (DTG) is shown in Fig. 1.

In a short time, AURUM[®] suffers little or no weight loss up to a temperature level of approximately 500°C - 1% weight loss (Td1) at 520°C and 5% weight loss (Td5) at 570°C - exhibiting the best thermal decomposition properties out of all heat resistant resins.

			(°C)
	Td1	Td5	Td50
AURUM®	520	570	670
PEEK	480	520	610

Fig. 1 Thermal Decomposition Curve of AURUM[®]

Distribution BIEGLO GmbH, Germany info@bieglo.com +49 40 401130000

BARplast LLC, USA info@barplast.com +1 713 5171938

Disclaimer

Kinematic Viscoelasticity of AURUM[®]

Kinematic viscoelasticity is used as a measure for evaluating the thermal properties of a material.

The modulus of elasticity of a material changes substantially in the vicinity of the glass transition temperature. Fig. 1 shows the way the viscoelasticity of AURUM[®] changes in comparison with other representative crystalline engineering plastics (PEEK, PAm 6,6 and PTFE) and a non-crystalline engineering plastic (PES).

With the conventional crystalline engineering plastics, the glass transition temperature of all of them is lower by over 100°C than that of AURUM[®], and therefore their flexural modulus declines sharply in the low temperature range (RT: up to 200°C).

On the other hand, the characteristic of a non-crystalline engineering plastic (PES) is that it is higher in glass transition temperature than a crystalline engineering plastic. In spite of that, however, its modulus of elasticity falls very sharply at a temperature a little higher than 200°C.

As described above, AURUM[®] has those excellent thermal properties which even non-crystalline engineering plastics, not to mention the conventional crystalline engineering plastics, do not have. Because of this, AURUM[®] can be applied to various moving parts requiring high performance.

	Тд	Tm	
(A) AURUM [®]	250	388	Crystalline
(B) PEEK	143	334	Crystalline
(C) PES	225	-	Non-crystalline
(D) PAm 6,6	80	265	Crystalline
(E) PTFE	-110, 30, 130	327	Crystalline

FIG. 1 KINETIC VISCOEIASTICITY	Fig. 1	Kinetic Viscoelasticity
--------------------------------	--------	-------------------------

Distribution BIEGLO GmbH, Germany info@bieglo.com +49 40 401130000

BARplast LLC, USA info@barplast.com +1 713 5171938

Disclaimer

Temperature Dependence of Tensile Strength and Flexural Modulus of AURUM[®]

The short-term heat resistance of a resin basically depends greatly on the glass transition temperature of the resin.

The glass transition temperature of AURUM[®] is as high as 250°C, or considerably higher than that of the conventional non-crystalline and crystalline engineering plastics. Consequently, AURUM[®] retains high strength and stiffness up to a temperature range exceeding 200°C, and therefore AURUM[®] can be applied to various engineering parts requiring excellent mechanical properties in a high-temperature atmosphere. Refer to Table 1.

Fig. 1 shows the temperature dependence of the flexural modulus of AURUM[®] in a non-crystalline state, a representative non-crystalline engineering plastic PES and a crystalline engineering plastic PEEK. AURUM[®] shows better heat resistance than PES and PEEK.

Fig. 1 Temperature Dependence of Flexural Modulus of Various Engineering Plastics

Shiodome City Center 1-5-2, Higashi-Shimbashi, Minato-ku, Tokyo 105-7117, Japan

Table 1 Temperature Dependence of Mechanical Strength of AURUM[®] (RT up to 230°C)

• Temperature dependence of tensile strength (kg/cm²)

	R.T.	100°C	150°C	200°C	230°C
JGN3030	1680	1270	1080	890	640
JCN3030	2330	1780	1440	1110	870

• Temperature dependence of flexural strength (kg/cm²)

	R.T.	100°C	150°C	200°C	230°C
JGN3030	2460	2020	1760	1310	850
JCN3030	3260	2690	2200	1610	1090

• Temperature dependence of flexural modulus (kg/cm²)

	R.T.	100°C	150°C	200°C	230°C
JGN3030	97000	84000	82000	78000	69000
JCN3030	194000	171000	171000	164000	143000

Distribution BIEGLO GmbH, Germany info@bieglo.com +49 40 401130000

BARplast LLC, USA info@barplast.com +1 713 5171938

Disclaimer

Long-term Thermal Stability of AURUM[®]

One of the characteristics of AURUM[®] is excellent long-term thermal stability at high temperatures.

The long-term thermal stability of a resin is usually evaluated by the changes with time in its properties (such as mechanical and electrical properties, for example) which will take place when a test specimen of the resin is exposed to a high-temperature atmosphere.

Fig. 1 shows changes in the tensile strength of AURUM[®] at 230°C.

In addition, Fig. 2 shows changes in the Izod impact strength of AURUM[®] in comparison with ULTEM, another thermoplastic polyimide.

Fig. 1 Changes with Time in Tensile Strength at 230°C

Fig. 2 Changes with Time in Izod Impact Strength at 220°C

Distribution BIEGLO GmbH, Germany info@bieglo.com +49 40 401130000

BARplast LLC, USA info@barplast.com +1 713 5171938

Disclaimer

Short-term Heat Resistance of AURUM[®]

The short-term heat resistance of a resin basically depends greatly on the glass transition temperature of the resin.

The glass transition temperature of AURUM[®] is as high as 250°C, or considerably higher than that of the conventional non-crystalline and crystalline engineering plastics. Consequently, AURUM[®] retains high strength and stiffness up to a temperature range exceeding 200°C, and therefore AURUM[®] can be applied to various engineering parts requiring excellent mechanical properties in a high-temperature atmosphere.

The temperature dependence of tensile strength, flexural strength, and flexural modulus of AURUM[®] in a non-crystalline state is shown below.

Temperature dependece of tensile strength (kg/cm ²)						
	Room temp	100°C	150°C	200°C	250°C	
JGN3030	1,680	1,270	1,080	890	640	
JCN3030	2,330	1,780	1,440	1,110	870	
Temperature dependence of flexural strength (kg/cm ²)						
	Room temp	100°C	150°C	200°C	250°C	
JGN3030	2,460	2,020	1,760	1,310	850	
JCN3030	3,260	2,690	2,200	1,610	1,090	
Temperature dependence of flexural mudulus (kg/cm ²)						
Room temp 100°C 150°C 200°C 250°C						
JGN3030	97,000	84,000	82,000	78,000	69,000	
JCN3030	194,000	171,000	171,000	164,000	143,000	

Distribution BIEGLO GmbH, Germany info@bieglo.com +49 40 401130000

BARplast LLC, USA info@barplast.com +1 713 5171938

Disclaimer